
State of GPT
Andrej Karpathy
Microsoft BUILD
May 23, 2023

How to train
your (Chat)GPT
Assistant
An emerging recipe

GPT Assistant training pipeline
Pretraining Supervised Finetuning Reward Modeling Reinforcement Learning

init
from

Stage

Dataset

Algorithm

Model

Notes

init
from

init from SFT
use RM

GPT Assistant training pipeline
Pretraining Supervised Finetuning Reward Modeling Reinforcement Learning

init
from

Stage

Dataset

Algorithm

Model

Notes

init
from

init from SFT
use RM

Data collection

[Training data mixture used in Meta’s LLaMA model]

Download a large amount of publicly available data

Transform all text into one
very long list of integers.

Raw text

Tokens

Integers

Tokenization

Typical numbers:
~10-100K possible tokens
1 token ~= 0.75 of word

Typical algorithm:
Byte Pair Encoding

GPT-3
(2020)

LLaMA
(2023)

50,257 vocabulary size
2048 context length
175B parameters
Trained on 300B tokens

Training: (rough order of magnitude to have in mind)
・ O(1,000 - 10,000) V100 GPUs
・ O(1) month of training
・ O(1-10) $M

32,000 vocabulary size
2048 context length
65B parameters
Trained on 1-1.4T tokens

Training for 65B model:
• 2,048 A100 GPUs
• 21 days of training
• $5M

2 example models

Pretraining

Row 1: Here is an example document 1 showing some tokens.
Row 2: Example document 2<|endoftext|>Example document 3<|endoftext|>Example document
Row 3: This is some random text just for example<|endoftext|>This
Row 4: 1,2,3,4,5

The inputs to the Transformer are arrays of shape (B,T)
・ B is the batch size (e.g. 4 here)
・ T is the maximum context length (e.g. 10 here)
Training sequences are laid out as rows, delimited by special <|endoftext|> tokens

4342 318 281 1672 3188 352 4478 617 16326 13

16281 3188 362 50256 16281 3188 513 50256 16281 3188

1212 318 617 4738 2420 655 329 1672 50256 1212

16 11 17 11 18 11 19 11 20 11

One training
batch, array
of shape (B,T)

B = 4

T = 10

4342 318 281 1672 3188 352 4478 617 16326 13

16281 3188 362 50256 16281 3188 513 50256 16281 3188

1212 318 617 4738 2420 655 329 1672 50256 1212

16 11 17 11 18 11 19 11 20 11B = 4

T = 10

Green = a random highlighted token
Yellow = its context
Red = its target

50,257 numbers
(probabilities for the next token)
correct index (label): 513

Each cell only ”sees” cells in its row, and
only cells before it (on the left of it), to
predict the next cell (on the right of it)

Transformer
(neural network)

Pretraining

One training
batch, array
of shape (B,T)

Training
process

Training data (Shakespeare)

Samples at initialization

Samples after 250 iterations of training

Samples after 500 iterations of training

Samples after 5,000 iterations of training

Samples after 30,000 iterations of training

Pretraining
Training curve examples

LLaMAToy GPT-2

Step 1:
Model “pretraining” on large
unsupervised dataset

Base models learn powerful, general representations

Step 2:
model “finetuning” on small
supervised dataset

GPT-2 is “tricked” into
performing a task by
completing the document

GPT-2 kicked off the era of prompting over finetuning

Base models can be prompted into completing tasks
Make your model look like a document!

Base models in the wild

Base models are NOT 'Assistants'

・ Base model does not answer questions
・ It only wants to complete internet documents
・ Often responds to questions with more

questions, etc.:

It can be tricked into performing
tasks with prompt engineering:

Base models are
NOT 'Assistants’
(They can be somewhat tricked
into being AI assistants)

GPT Assistant training pipeline
Pretraining Supervised Finetuning Reward Modeling Reinforcement Learning

init
from

Stage

Dataset

Algorithm

Model

Notes

init
from

init from SFT
use RM

SFT Dataset
Prompt:
"Can you write a short introduction about the relevance of the
term "monopsony" in economics? Please use examples related to
potential monopsonies in the labour market and cite relevant
research."

Response:
""Monopsony" refers to a market structure where there is only
one buyer for a particular good or service. In economics, this
term is particularly relevant in the labor market, where a
monopsony employer has significant power over the wages and
working conditions of their employees. The presence of a
monopsony can result in lower wages and reduced employment
opportunities for workers, as the employer has little incentive
to increase wages or provide better working conditions. Recent
research has identified potential monopsonies in industries
such as retail and fast food, where a few large companies
control a significant portion of the market (Bivens & Mishel,
2013). In these industries, workers often face low wages,
limited benefits, and reduced bargaining power, leading to a
situation where they are dependent on the employer for their
livelihood. This dependence can result in further suppression
of wages and a decline in working conditions. Overall, the
concept of monopsony is essential to understanding the dynamics
of labor markets and the impact of market power on workers.
Further research is needed to understand the extent and impact
of monopsonies on the economy and to develop policies to
address this issue. References: Bivens, J., & Mishel, L.
(2013). The Pay of Corporate Executives and Financial
Professionals as Evidence of Rents in Top 1 Percent Incomes.
Journal of Economic Perspectives, 27(3), 57-78."

Labeling instructions

GPT Assistant training pipeline
Pretraining Supervised Finetuning Reward Modeling Reinforcement Learning

init
from

Stage

Dataset

Algorithm

Model

Notes

init
from

init from SFT
use RM

RM Dataset

RM Dataset

RM Training

Blue are the prompt tokens, identical across rows
Yellow are completion tokens, different in each row
Green is the special <|reward|> token “readout”
Only the outputs at the green cells is used, the rest are ignored

prompt completion
1

... ... <|reward|>

prompt completion
2

... <|reward|>

prompt completion
3

... <|reward|>B

T

1.2
0.2 -0.5

loss function
measures the
predicted
rewards’
consistency
with the labeled
ordering

GPT Assistant training pipeline
Pretraining Supervised Finetuning Reward Modeling Reinforcement Learning

init
from

Stage

Dataset

Algorithm

Model

Notes

init
from

init from SFT
use RM

RL Training

In this example:
・ Row #1 tokens were great. These get their probabilities boosted.
・ Row #2 tokens were bad. These get their probabilities decreased.
・ Row #3 tokens were ~ok. These get their probabilities slightly boosted.

Blue are the prompt tokens, identical across rows
Yellow are completion tokens by the model (initialized with SFT model)
Green is the special <|reward|> token “readout”, RM now predicts these
Only the yellow cells are trained on, the rest are ignored.

The sampled tokens become labels, but the training objective is
weighted by the “advantage” (normalized rewards)

prompt completion
1

... ... <|reward|>

prompt completion
2

... <|reward|>

prompt completion
3

... <|reward|>B

T

1.0
0.2 -1.2

GPT Assistant training pipeline
Pretraining Supervised Finetuning Reward Modeling Reinforcement Learning

init
from

Stage

Dataset

Algorithm

Model

Notes

init
from

init from SFT
use RM

Why RLHF?
It works better.

Why RLHF?

It is easier to
discriminate
than to generate.
Simple example:
it’s much easier to spot
a good haiku than
it is to generate one.

Mode collapse
Finetuned models lose entropy

RLHF model entropyBase model entropy

RLHF models might confidently
output very few variations.
=> Base models can be better at
tasks that require diverse outputs.

http://www.lesswrong.com/posts/t9svvNPNmFf5Qa3TA/mysteries-of-mode-collapse

Mode collapse
Finetuned models lose entropy

Base models can be better in
tasks where you have N
examples of things and want
to generate more things.

Toy example:

Assistant models
in the wild

https://lmsys.org/blog/2023-05-10-leaderboard/

Applications

Human
text generation
vs. LLM text
generation

・ "For this next step of my blog let me compare the population of California
and Alaska"

・ "Ok let's get both of their populations"
・ "I know that I am very likely to not know these facts off the top of my head,

let me look it up"
・ "[uses Wikipedia] Ok California is 39.2M"
・ "[uses Wikipedia] Ok Alaska is 0.74M"
・ "Now we should divide one by the other. This is a kind of problem I'm not going

to be able to get from the top of my head. Let me use a calculator"
・ "[uses calculator] 39.2 / 0.74 = 53"
・ "(reflects) Quick sanity check: 53 sounds like a reasonable result, I can continue."

・ "Ok I think I have all I need"
・ "[writes] California has 53X times greater..."
・ "(retry) Uh a bit phrasing, delete, [writes] California's population is 53 times

that of Alaska."
・ "(reflects) I'm happy with this, next."

"California's population is 53 times that of Alaska."

Tokens

・ All of the internal monologue is stripped away in the text LLMs train on
・ They spend the ~same amount of compute on every token
・ => LLMs don't reproduce this behavior by default!
・ They don't know what they don't know, they imitate the next token
・ They don't know what they are good at or not, they imitate the next token
・ They don't reflect. They don't sanity check. They don't correct their mistakes

along the way
・ They don't have a separate "inner monologue stream in their head"
・ They do have very large fact-based knowledge across a vast number of areas
・ They do have a large and ~perfect "working memory" (their context window)

Human text
generation vs. LLM
text generation

"California's population is 53 times that of Alaska."

Chain of thought
“Models need tokens to think”
Break up tasks into multiple steps/stages
Prompt them to have internal monologue
Spread out reasoning over more tokens

Tokens

Ensemble multiple attempts
LLMs can get “unlucky” and sample a bad thought.

Once they do they are “stuck with it”. Make a few attempts.

Ask for reflection
LLMs (esp GPT-4) can often recognize later when their

samples didn’t seem to have worked out well.

Recreate our 'System 2'
Parallels to System 1 (fast, automatic) vs. System 2

(slow, deliberate) modes of thinking

Parallels
to AlphaGo:

Expand a tree of intermediate
thoughts, evaluate them:

Chains / Agents
Think less “one-turn” Q&A, and more chains,

pipelines, state machines, agents.

[ReAct: Synergizing Reasoning and Acting
in Language Models, Yao et al. 2022]

[AutoGPT]

Condition on good performance
LLMs don’t want to succeed. They want to imitate training sets with a spectrum of performance

qualities. You want to succeed, and you should ask for it.

Related examples:
“You are a leading
expert on this topic”

“Pretend you have IQ 120”

...

Tool use / Plugins
Offload tasks that LLMs are not good at

Importantly: they don't "know" they are not good

Intersperse text with special
tokens that call external APIs

ChatGPT
plugins

ChatGPT
Code Interpreter

Retrieval-Augmented LLMs
Load related context/information into “working memory” context window

LLMGoogle/Bing Retrieve task-relevant information,
pack it into context

e.g. ChatGPT + Browsing
e.g. Bing

Emerging recipe:
・ Break up relevant documents into chunks
・ Use embedding APIs to index chunks into a vector store
・ Given a test-time query, retrieve related information
・ Organize the information into the prompt

Constrained prompting
“Prompting languages” that interleave generation, prompting, logical control

Finetuning

It is becoming a lot more
accessible to finetune LLMs:

・ Parameter Efficient FineTuning (PEFT), e.g. LoRA
・ Low-precision inference, e.g. bitsandbytes
・ Open-sourced high quality base models, e.g. LLaMA

Keep in mind:
・ Requires a lot more technical expertise
・ Requires contractors and/or synthetic data pipelines
・ A lot slower iteration cycle
・ SFT is achievable
・ RLHF is research territory

Default recommendations*

Goal 1: Achieve your top possible performance
・ Use GPT-4
・ Use prompts with detailed task context, relevant information, instructions

・ “what would you tell a task contactor if they can’t email you back?”
・ Retrieve and add any relevant context or information to the prompt
・ Experiment with prompt engineering techniques (previous slides)
・ Experiment with few-shot examples that are 1) relevant to the test case, 2) diverse (if appropriate)
・ Experiment with tools/plugins to offload tasks difficult for LLMs (calculator, code execution, ...)
・ Spend quality time optimizing a pipeline / "chain"
・ If you feel confident that you maxed out prompting, consider SFT data collection + finetuning
・ Expert / fragile / research zone: consider RM data collection, RLHF finetuning

Goal 2: Optimize costs
・ Once you have the top possible performance, attempt cost saving measures

(e.g. use GPT-3.5, find shorter prompts, etc.)

Use cases

Models may be biased

Models may fabricate (“hallucinate”) information

Models may have reasoning errors

Models may struggle in classes of applications, e.g. spelling related tasks

Models have knowledge cutoffs (e.g. September 2021)

Models are susceptible to prompt injection, “jailbreak” attacks, data
poisoning attacks,…

Recommendations:

Use in low-stakes applications, combine with human oversight

Source of inspiration, suggestions

Copilots over autonomous agents

GPT-4

Looking forward

Ladies and gentlemen, innovators,
and trailblazers of Microsoft BUILD 2023,
Welcome to a gathering of brilliant minds like no other. You are the architects of the future, the
visionaries molding the digital realm in which humanity thrives. Embrace the limitless possibilities
of technology, and let your ideas soar as high as your imagination. Together, let's create a more
connected, remarkable, and inclusive world for generations to come. Get ready to unleash your
creativity, canvas the unknown, and turn dreams into reality. Your journey begins today!

Thank you!

